Selection and Genetic Drift in North American Maize
نویسندگان
چکیده
Characterizing the impact of selection and genetic drift in the formation of heterotic groups and patterns in maize can reveal important insights into the mechanism underlying adaptation, and the relative importance of each force in defining population structure. The objectives were to characterize the role selection for hybrid performance had in defining population structure in both a reciprocal full-sib selection (RFS) program and a large collection of historically important inbred lines. The Illumina GoldenGate Assay was used to genotype the University of Nebraska-Lincoln Replicated Recurrent Selection (UNL-RpRS) program. Eight cycles of S1-progeny and RFS selection were conducted for an index approximating grain yield. The distance between S1-progeny programs was compared to the distance between RFS selection programs. No evidence was found to suggest a significant genome-wide impact of selection for hybrid performance. This result suggests that, genome-wide, selection was not a strong force in diverging populations. To further investigate the roles of selection and genetic drift a second dataset was generated with genotype-by-sequencing data accompanied by increased sample size for each population in the UNL-RpRS program. A dense physical map was generated, which allowed genomic localization of selection signatures associated with directional selection and also selection for hybrid performance. The RFS and S1-progeny selection programs left similar signatures of selection across the genome. A scan for directional selection identified similar regions under selection across replicate populations, which suggests that adaptation is occurring from standing genetic variation. A large collection of inbred lines was collected and grouped into four eras, which represented the doublecross , three-way cross to single-cross transition, single-cross, and advanced single-cross eras of maize breeding, respectively. A small number of inbred lines were found to contribute to the parentage of the next era. The inbred lines identified here were also major contributors in other studies as well. Scanning the genome for localized selection signatures revealed genes putatively associated with cold tolerance and resistance to fungal and bacterial pathogens, which is consistent with the notion that selection for increased yield has selected hybrids with increased tolerance to biotic and abiotic stresses. iv ACKNOWLEDGEMENTS Scientific papers generally represent a project progressing, in a very linear fashion, from point A to point B. This is a very efficient and appropriate methodology to present scientific research, however, rarely is the path from A to B a straight line. Instead, the scientific process can become convoluted with twists and turns stemming from a …
منابع مشابه
Selection for Silage Yield and Composition Did Not Affect Genomic Diversity Within the Wisconsin Quality Synthetic Maize Population
Maize silage is forage of high quality and yield, and represents the second most important use of maize in the United States. The Wisconsin Quality Synthetic (WQS) maize population has undergone five cycles of recurrent selection for silage yield and composition, resulting in a genetically improved population. The application of high-density molecular markers allows breeders and geneticists to ...
متن کاملThe Effects of Both Recent and Long-Term Selection and Genetic Drift Are Readily Evident in North American Barley Breeding Populations.
Barley was introduced to North America ∼400 yr ago but adaptation to modern production environments is more recent. Comparisons of allele frequencies among growth habits and spike (inflorescence) types in North America indicate that significant genetic differentiation has accumulated in a relatively short evolutionary time span. Allele frequency differentiation is greatest among barley with two...
متن کاملGenetic improvement of Grain Yield by Determination of Selection Index in Single Cross Hybrids of Maize (Zea mays L.)
Selection based on proper selection indices can be one of the most effective methods for indirect selection of yield and yield components, simultaneously. In order to determination of selection index for improvement of maize yield, 60 single cross maize hybrids were planted in two separate experiments (drought stress and normal conditions) based on randomized complete block design (RCBD) with t...
متن کاملComparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae).
Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native...
متن کاملThe Genomic Impacts of Drift and Selection for Hybrid Performance in Maize.
Although maize is naturally an outcrossing organism, modern breeding utilizes highly inbred lines in controlled crosses to produce hybrids. The U.S. Department of Agriculture's reciprocal recurrent selection experiment between the Iowa Stiff Stalk Synthetic (BSSS) and the Iowa Corn Borer Synthetic No. 1 (BSCB1) populations represents one of the longest running experiments to understand the resp...
متن کامل